Mark schemes

1.	(a)	Initial temperature was a control variable	1
	(b)	copper	1
		greater change in mass (than the other metals) this mark is dependent on scoring the first mark allow more ice melted (than the other metals) allow the ice melted faster (than the other metals)	1
	(c)	variation in initial mass of ice cube allow variation in initial volume of ice cube or	
		surface area of the ice cube touching the metal allow melting of ice while handling allow variation in room temperature allow initial temperature of metal block	1

[9]

(N		FIIYSICSAIIdiviatiisTut
(d)	an answer of 0.016 (kg) scores 5 marks	
	$E = m \times 2100 \times 15$	1
	E = m × 334 000	1
	5848 = 31 500 m + 334 000 m	
	or	
	5848 = 365 500 m	1
	$m = \frac{5848}{(31\ 500\ +\ 334\ 000)}$ or $m = \frac{5848}{(365\ 500)}$	-
	m = 0.016 (kg)	1
	allow 2 marks for an answer that rounds to 0.186 or 0.0175 if no other mark scored allow 1 mark for either $5848 = m \times 2100 \times 15$	
	or 5848 = m × 334 000	1
(a)	$E = \frac{1.25 \times 10^{18}}{3.16 \times 10^7}$	1
	$E = 3.96 \times 10^{10} (J)$	
	an answer that rounds to 3.96 \times 10 ¹⁰ (J) scores 1 mark	1

(b)	t = 86 400 (s)	1
	27 000 = I × 86 400	
	allow a correct substitution of an incorrectly/not converted value of t	1
	$I = \frac{27\ 000}{86\ 400}$	
	allow a correct rearrangement using an incorrectly/not converted value of t	1
	I = 0.3125 (A)	
	allow a correct calculation using an incorrectly/not converted value of t	
	allow a correctly calculated answer rounded to 2 or 3 sf	1
(c)	$0.15 = \frac{\text{useful power output}}{7800}$	
	allow a correct substitution of an incorrectly/not converted value of total power input	
	useful power output = 0.15 × 7800	1
	allow a correct rearrangement using an incorrectly/not converted value of total power input	1
	useful power output = 1170 (W)	
	this answer only but allow 1200 (W) if correct working shown	
		1

(d)	a really large area of land would need to be covered with solar cells	1	
	due to the low useful power output of the solar cells		
	allow due to the low efficiency of the solar cells		
	or		
	number of hours of daylight is too low (in UK)		
	or		
	low solar intensity (in UK)		
	or		
	solar radiation (in UK) is too low		
	or		
	material for construction of solar cells and/or lithium batteries is in limited supply		
		1	
			[11]
(a)	the total energy of the racing track and the car is constant.		
		1	
(b)	$E_{p} = 0.040 \times 9.8 \times 0.90$		
	allow a correct substitution of an incorrectly/not		
	converted value of h		
		1	
	$E_{p} = 0.3528 (J)$		
	this answer only		
		1	
	$0.3528 = 0.5 \times 0.040 \times v^2$		
	allow a correct substitution of a calculated E_{ρ}		
		1	
	0.3528		
	$v^2 = \frac{0.3528}{0.5 \times 0.040}$		
	allow a correct rearrangement using a calculated E_p		
		1	
	v = 4.2 (m/s)		
	allow an answer consistent with their calculated E_p		
	٣	1	

	(c)	more than 0.20 J	1	
		(because) the car needs to be moving at the top of the loop		
		or (because) the car needs to be moving to complete the loop		
		or not all E_k at B will be transferred to E_p at C		
		this mark is dependent on scoring the first mark		
		allow energy dissipated to the surroundings		
			1	701
				[8]
4.	(a)	electric car journey will take a (much) longer time		
		allow diesel car journey will take a shorter time		
			1	
		(because) battery will need recharging		
		or (because) the car will need to stop for 40 minutes		
		allow diesel car will not need to be refuelled		
			1	
	(b)	energy stored in diesel = 45 × 51 = 2295 (MJ)		
	(0)		1	
		energy stored in batteries = $0.95 \times 280 = 266$ (MJ)		
			1	
		(so) the diesel stores more energy than the battery (and the diesel car has a higher range)		
		this mark is dependent on correct calculations of energy		
		stored		
			1	
	(c)	any 2 from:		
		recharging is a continuous process		
		allow cars do not need to stop to recharge		
		allow shorter journey times		
		allow don't have to wait for battery to recharge		
		allow longer time between recharges allow the range of the electric car is increased		
		 fewer cells needed in the car 		
		allow smaller battery needed in the car		
		more cars can be charged at the same time		
		allow do not need to find a charging point		
		allow fewer charging stations needed		
		ignore it is quicker		
		ignore cost of charging ignore methods of electricity generation		

(d)

when cars are plugged in

		the energy from car batteries could be transferred back to the National Grid	1	
		allow mains supply for National Grid	1	
		allow energy from car batteries could be used to power		
		household appliances		
			1	
				[9]
E	(a)	Length of sled		
5.	()		1	
		Time for sled to pass light gate		
			1	
	(h)			
	(b)	$E_{p} = 8330 (J)$	1	
			•	
		$8330 = m \times 9.8 \times 17.0$		
		allow a correct substitution using an incorrectly/not converted value of E_p		
			1	
		8330		
		$m = = \frac{8330}{9.8 \times 17.0}$		
		allow a correct rearrangement using an incorrectly/not converted value of		
		Ep		
			1	
		m = 50.0 (kg)		
		allow a correct calculation using an incorrectly/not converted value of E_p		
			1	
	(c)	$\frac{1}{2}$ mv ² = mgh		
	(0)	or		
		decrease in E_p = increase in E_k		
			1	
		masses cancel on both sides of the equation		
		or		
		$v^2 = 2gh$		
			1	
		(final) speed only depends on vertical height (and gravitational field strength)		
			1	
		variations will be due to air resistance/friction		
		or		
		different initial speed	1	
			1	[10]
				[]

PhysicsAndMathsTutor.com

Energy (H)

6.	(a)	% increase = $\frac{(10\ 000\ -\ 3200)}{3200}$ × 100	1
		% increase = 212.5 (%)	1
	(b)	Any two from: • no sulfur dioxide released • doesn't cause acid rain • no particulates released • doesn't cause global dimming • less carbon dioxide released (per kg of fuel burned) • less global warming <i>allow less climate change</i> <i>allow less greenhouse gases</i> • no solid waste • gas mining is less destructive than coal mining <i>ignore less air pollution</i>	2
	(c)	mean sea surface temperature shows a (steady) increase	2
		over the time period on the graph conditional on scoring 1 st marking point allow between a correct pair of dates at least 10 years apart or from 16.45 (°C) to 16.96 (°C) allow a correct pair of temperatures at least 10 years apart	1
	(d)	thermistor C	1
		(because) the change in resistance is greatest conditional on scoring 1 st marking point allow the gradient is highest allow more sensitive to temperature change	1
		between 0 and 25 °C conditional on scoring 2 nd marking point allow between 16 and 17 °C if thermistor C is not chosen, allow for 1 mark each: not thermistor A because there is no/little change in resistance not thermistor B as there is only a small change in resistance not thermistor D as there is no data available between 0 and 40 °C	1

701

7.	(a)	50	1
		Hz / hertz	
		allow Hertz	
			1
	(b)	(both) switches need to be closed / on	1
		to complete the series circuit	
		or	
		to allow charge to flow or	
		so there is a current in the circuit	
			1
	(c)		
		an answer of 7.5 (A) scores 3 marks	
		an answer of 0.237(A) scores 2 marks	
		$1800 = l^2 \times 32$	
		this mark may be awarded if P is incorrectly or not converted	
			1
		$I^2 = \frac{1800}{32}$	
		or l ² = 56.25	
		this mark may be awarded if P is incorrectly or not	
		converted	
			1
		I = 7.5 (A)	
		this answer only	
			1

	(d)				
			an answer of 300 (s) scores 3 marks		
			an answer of 300 000 (s) scores 2 marks		
		1500 = 450	000		
			this mark may be awarded if P is incorrectly or not		
			converted	1	
		450.00	0		
		$t = \frac{450\ 000}{1500}$	_		
		1000	this mark may be awarded if P is incorrectly or not		
			converted	1	
		t 200 (a)			
		t = 300 (s)	this answer only		
				1	
				[10]]
1	(a)	the heating	g element of the kettle takes time to heat up		
			allow the kettle takes time to heat up		
				1	
	(b)	Δ Θ = 78 (°	C)		
				1	
		155 000 =	m × 4200 × 78		
			allow a correct substitution using an incorrect value of $\Delta \Theta$		
				1	
		m = 155 (000		
		4200	×78	_	
			allow a correct rearrangement using an incorrect value of $\Delta \epsilon$) 1	
		m 0.472	4 (1-2)		
		m = 0.473	allow a correct calculation of mass using an incorrect value of	of A O	
				1	
		m = 0.47 (ka)		
		··· – 0.47 (1	

	(c)	Gradient =	$\frac{\Delta \Theta}{t}$		
			allow gradient = rate of temperature increase		
			allow calculation of gradient		
				1	
		Pt = mc∆⊖			
				1	
		P = gradier	nt × mc		
				1	101
					[9]
0	(a)				
9.			an answer of 2.5 (m) scores 3 marks		
		1470 = 60 :	x 9.8 x h		
			this mark may be awarded if E_p is incorrectly / not		
			converted		
				1	
		1470			
		$h = \frac{1}{60 \times 9.8}$			
		or			
		$h = \frac{1470}{500}$			
		588			
			this mark may be awarded if E_p is incorrectly / not		
			converted	1	
				I	
		h = 2.5 (m)			
			this answer only		
				1	
	(b)	(work done	against) air resistance		
	(0)	or			
		(work done	against) friction (between zip line and pulley)		
				1	
		causes the	rmal energy to be transferred to surroundings		
			ignore sound energy		
				1	

(c)	different people have different surface areas	
	allow streamlining	
	allow body position	
	body size is insufficient	
		1
	so would be affected by air resistance differently	
	or	
	initial speed may not be zero (1)	
	which would add to the total energy (of the system) (1)	
	allow people have different masses / weights (1)	
	so people have different terminal velocities (1)	
	reference to mass changing the kinetic energy or	
	gravitational potential energy negates both these marks	1
		[7]
(a)	chemical	1
		-
	equal to	
	allow the same as	1
	in this order only	1
	work dopo	
(b)	power = work done time	
	14/	
	allow $P = \frac{vv}{t}$	
		1
(c)	$200 = \frac{VV}{1900}$	
	1800	1
	W. 200 - 1800	
	$W = 200 \times 1800$	1
		_
	W = 360 000 (J)	1
	an answer of 360 000 (J) scores 3 marks	1
	1 /	

(d)	11 – 9.5 =	1.5 (m/s)		
		allow a change in speed between 1.2 and 1.5 (m/s)	1	
	$\left(\frac{1.5}{9.5}\right) \times 10$	0 = 15.8(%)		
		allow an answer consistent with their change in speed		
		an answer of 16 (%) scores 2 marks	1	
		an answer that rounds to 15.8 (%) scores 2 marks	1	
(e)	maximum	speed is lower		
			1	
	because n	naximum power output of cyclist is constant		
		allow maximum force on pedals is constant	_	
			1	
	(but) addit	ional work is done (against gravity)		
		do not accept additional work done against friction or air resistance		
	or	al potential operaty (of avaliet) is increased		
	gravitation	al potential energy (of cyclist) is increased	1	
				[11]
(a)	risk of elec	ctric shock (if someone touched the case)		
(a)		allow risk of electrocution (if someone touched the case)		
			1	
(h)	2530 = I ×	230		
(b)	2000 - 1 ^	this mark may be awarded if P is incorrectly / not converted		
		this mark may be awarded in this incorrectly / not convented	1	
	$I = \frac{2530}{230}$			
	200	this mark may be awarded if P is incorrectly / not converted		
		this mark may be awarded in this meeneday / not convented	1	
	I = 11 (A)			
		this answer only		
		an answer of 0.011 (A) scores 2 marks		
		an answer of 11 (A) scores 3 marks	1	

<i>,</i>				T HysicsAndinatiis i	<i>u</i> tor.cc		
	(c)	E = 2530 ×					
			this mark may be awarded if P is incorrectly / not converted	1			
		E = 35 420	(J)				
			this answer only	1			
		35 420 = m	n × 4200 × 70	_			
			allow their calculated $E = m \times 4200 \times 70$				
		05.40		1			
		$m = \frac{3542}{4200 \times 100}$	70				
			allow $m = \frac{\text{their calculated } E}{4200 \times 70}$				
			4200×70	1			
		m = 0.12 (k	(g)				
			allow an answer that is consistent with their calculated value	of E			
				-	[9]		
]	(a)	any three from:					
1		• no <u>ca</u>	arbon dioxide emitted (to produce electricity)				
			no greenhouse gases is insufficient				
		• does	n't cause global warming allow climate change or greenhouse effect for global warming	Y			
			ear power doesn't cause earthquakes	1			
			energy released per kg of fuel (compared to shale gas)				
	(h)			3			
	(b)	uranium or					
		plutonium	ignore any numbers given				
				1			

PhysicsAndMathsTutor.com

[8]

	(c)	a <u>neutron</u> is absorbed by a (large) nucleus a description in terms of only atoms negates first two marking points	
			1
		the nucleus splits into two (smaller) nuclei	1
		releasing energy (and gamma rays)	1
		and (two / three) neutrons	1
			I
13.	(a)	$1.2 = \frac{m}{2.3 \times 10^4}$	
		$m = 1.2 \times 2.3 \times 10^4$	1
			1
		m = 27 600 (kg) allow an answer of 28 000 (kg) or 2.8 × 10 ⁴ (kg)	
		or	
		$m = 2.76 \times 10^4 (kg)$	
		an answer of 27 600 (kg) scores 3 marks	1
	(b)	mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two	
			1
		(wind speed is halved) decreasing kinetic energy by a factor of four	1
		so kinetic energy decreases by a factor of eight	1
		allow power output for kinetic energy throughout	T

1

(c)
$$388\ 000 = 0.5 \times 13\ 800 \times v^2$$

this mark may be awarded if P is incorrectly / not converted
 $v^2 = \frac{(2 \times 388\ 000)}{13\ 800}$
this mark may be awarded if P is incorrectly / not converted
or
 $v^2 = \frac{388\ 000}{(0.5 \times 13\ 800)}$
or
 $v^2 = 56.2$
 $v = 7.50\ (m/s)$
an answer that rounds to 7.50 (m/s) only
(a) potential difference
allow p.d.
allow voltage
temperature
in this order only
(b) the current increases (when the potential difference increases)
(which) causes the temperature of the filament to increase
(so) the resistance increases
do not accept resistance increases and then levels off
(c) a higher proportion / percentage of the (total) power / energy input is usefully
transferred
wastes less energy is insufficient
or

higher (useful) power / energy output for the same (total) power / energy input

[14]

(d)	potential difference increases	1	
	current decreases	1	
(e)	1000 (Ω)		
	reason only scores if $R = 1000 \ (\Omega)$	1	
	potential difference is shared in proportion to the resistance		
	allow a justification using a correct calculation	1	
(f)	12 = I × 7000	1	
	$I = \frac{12}{7000}$	4	
		1	
	$I = 1.71 \times 10^{-3}$ (A) an answer that rounds to 1.7×10^{-3} (A) scores 3 marks	1	
	$I = 1.7 \times 10^{-3} (A)$		
	this answer only		
	or I = 0.0017 (A)		
	an answer of 2.4 × 10 ⁻³ (A) scores 2 marks		
	if no other marks scored allow 1 mark for calculation of total resistance (7000 Ω)		
	an answer of 1.7 × 10 ⁻³ (A) scores 4 marks	1	